摘要:Spikelet number per panicle (SNPP) is one of the most important yield components used to estimate rice yields. The use of high-throughput quantitative image analysis methods for understanding the diversity of the panicle has increased rapidly. However, it is difficult to simultaneously extract panicle branch and spikelet/grain information from images at the same resolution due to the different scales of these traits. To use a lower resolution and meet the accuracy requirement, we proposed an interdisciplinary method that integrated image analysis and a 5-point calibration model to rapidly estimate SNPP. First, a linear relationship model between the total length of the primary branch (TLPB) and the SNPP was established based on the physiological characteristics of the panicle. Second, the TLPB and area (the primary branch region) traits were rapidly extracted by developing image analysis algorithm. Finally, a 5-point calibration method was adopted to improve the universality of the model. The number of panicle samples that the error of the SNPP estimates was less than 10% was greater than 90% by the proposed method. The estimation accuracy was consistent with the accuracy determined using manual measurements. The proposed method uses available concepts and techniques for automated estimations of rice yield information.