摘要:The inhibition of a prepotent response is an essential executive function which enables us to suppress inappropriate actions in a given context. Individuals with fencing expertise exhibit behavioral advantages on tasks with high demands on response inhibition. This study examines the electrophysiological basis for the superior response inhibition in experienced fencers. In the Go/Nogo task where frequent stimuli required a motor response while reaction had to be withheld to rare stimuli, the fencers, compared with the non-fencers, exhibited behavioral as well as electrophysiological advantages when suppressing prepotent responses. The superior response inhibition in the fencers was characterized by enhanced Nogo-N2 and reduced Nogo-P3. Single-trial analysis revealed that the amplitude difference of the Nogo-N2 between two groups was caused by lower single-trial latency variability in the fencers (may be due to low attentional fluctuation and/or stable neural processing speed) while the amplitude difference of the Nogo-P3 resulted from truly weaker neural activity in the fencers (may be because few cognitive sources are needed and few control efforts are made). The two inhibition-related components are distinct neurophysiological indexes that, on the one hand, provide effective guidance to titrate the level of executive function in fencers, and on the other hand, facilitate to monitor fencers’ improvement in the training process.