首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures
  • 本地全文:下载
  • 作者:Tianqi Deng ; Haibin Su
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep17337
  • 出版社:Springer Nature
  • 摘要:We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension.
国家哲学社会科学文献中心版权所有