首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Proteome Analysis of Renoprotection Mediated by a Novel Cyclic Helix B Peptide in Acute Kidney Injury
  • 本地全文:下载
  • 作者:Cheng Yang ; Junjun Liu ; Long Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep18045
  • 出版社:Springer Nature
  • 摘要:We developed a novel, erythropoietin-derived, non-erythropoiesis, cyclic helix B peptide (CHBP) that displays potent renoprotection against acute kidney injury (AKI). To determine the mechanism of CHBP-mediated protection, we investigated the proteomic profile of mice treated with CHBP in a kidney ischemia-reperfusion (IR) injury model. The isobaric tags for relative and absolute quantitation (iTRAQ)-labeled samples were analyzed using a QSTAR XL LC/MS system. In total, 38 differentially expressed proteins (DEPs) were shared by all experimental groups, while 3 DEPs were detected specifically in the IR + CHBP group. Eight significant pathways were identified, and oxidative phosphorylation was shown to be the most important pathway in CHBP-mediated renoprotection. The significant DEPs in the oxidative phosphorylation pathway elicited by CHBP are NADH-ubiquinone oxidoreductase Fe-S protein 6 (NDUFS6), alpha-aminoadipic semialdehyde synthase (AASS) and ATP-binding cassette sub-family D member 3 (ABCD3). The DEPs mentioned above were verified by RT-qPCR and immunostaining in mouse kidneys. We tested 6 DEPs in human biopsy samples from kidney transplant recipients. The trend of differential expression was consistent with that in the murine model. In conclusion, this study helps to elucidate the pharmacological mechanisms of CHBP before clinical translation.
国家哲学社会科学文献中心版权所有