期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:49
页码:15107-15112
DOI:10.1073/pnas.1516109112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceSquashes, pumpkins, and gourds belonging to the genus Cucurbita were domesticated on several occasions throughout the Americas, beginning around 10,000 years ago. The wild forms of these species are unpalatably bitter to humans and other extant mammals, but their seeds are present in mastodon dung deposits, demonstrating that they may have been dispersed by large-bodied herbivores undeterred by their bitterness. However, Cucurbita may have been poorly adapted to a landscape lacking these large dispersal partners. Our study proposes a link between the disappearance of megafaunal mammals from the landscape, the decline of wild Cucurbita populations, and, ultimately, the evolution of domesticated Cucurbita alongside human cultivators. The genus Cucurbita (squashes, pumpkins, gourds) contains numerous domesticated lineages with ancient New World origins. It was broadly distributed in the past but has declined to the point that several of the crops progenitor species are scarce or unknown in the wild. We hypothesize that Holocene ecological shifts and megafaunal extinctions severely impacted wild Cucurbita, whereas their domestic counterparts adapted to changing conditions via symbiosis with human cultivators. First, we used high-throughput sequencing to analyze complete plastid genomes of 91 total Cucurbita samples, comprising ancient (n = 19), modern wild (n = 30), and modern domestic (n = 42) taxa. This analysis demonstrates independent domestication in eastern North America, evidence of a previously unknown pathway to domestication in northeastern Mexico, and broad archaeological distributions of taxa currently unknown in the wild. Further, sequence similarity between distant wild populations suggests recent fragmentation. Collectively, these results point to wild-type declines coinciding with widespread domestication. Second, we hypothesize that the disappearance of large herbivores struck a critical ecological blow against wild Cucurbita, and we take initial steps to consider this hypothesis through cross-mammal analyses of bitter taste receptor gene repertoires. Directly, megafauna consumed Cucurbita fruits and dispersed their seeds; wild Cucurbita were likely left without mutualistic dispersal partners in the Holocene because they are unpalatable to smaller surviving mammals with more bitter taste receptor genes. Indirectly, megafauna maintained mosaic-like landscapes ideal for Cucurbita, and vegetative changes following the megafaunal extinctions likely crowded out their disturbed-ground niche. Thus, anthropogenic landscapes provided favorable growth habitats and willing dispersal partners in the wake of ecological upheaval.
关键词:evolutionary ecology ; sensory ecology ; TAS2R genes ; ancient DNA ; archaeogenomics