首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies
  • 本地全文:下载
  • 作者:Yoko Takano ; Kazuhito Shimamoto ; Kenjiro Hanaoka
  • 期刊名称:Journal of Clinical Biochemistry and Nutrition
  • 印刷版ISSN:0912-0009
  • 电子版ISSN:1880-5086
  • 出版年度:2016
  • 卷号:58
  • 期号:1
  • 页码:7-15
  • DOI:10.3164/jcbn.15-91
  • 出版社:The Society for Free Radical Research Japan
  • 摘要:Hydrogen sulfide (H2S) functions in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. On the other hand, sulfane sulfur, which is a sulfur atom with six valence electrons but no charge, has the unique ability to bind reversibly to other sulfur atoms to form hydropersulfides (R-S-SH) and polysulfides (-S-Sn-S-). H2S and sulfane sulfur always coexist, and recent work suggests that sulfane sulfur species may be the actual signaling molecules in at least some biological phenomena. For example, one of the mechanisms of activity regulation of proteins by H2S is the S -sulfhydration of cysteine residues (protein Cys-SSH). In this review, we summarize recent progress on chemical tools for the study of H2S and sulfane sulfur, covering fluorescence probes utilizing various design strategies, H2S caged compounds, inhibitors of physiological H2S-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase), and labeling reagents. Fluorescence probes offer particular advantages as chemical tools to study physiological functions of biomolecules, including ease of use and real-time, nondestructive visualization of biological processes in live cells and tissues.
  • 关键词:hydrogen sulfide;sulfane sulfur;fluorescence probe;caged compound;enzyme inhibitor
国家哲学社会科学文献中心版权所有