期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2015
卷号:12
DOI:10.5772/61058
语种:English
出版社:SAGE Publications
摘要:An important challenge in computer vision is the implementation of fast and accurate feature detectors, as they are the basis for high-level image processing analysis and understanding. However, image feature detectors cannot be easily applied in embedded scenarios, mainly due to the fact that they are time consuming and require a significant amount of processing power. Although some feature detectors have been implemented in hardware, most implementations target a single detector under very specific constraints. This paper proposes a flexible hardware implementation approach for computing interest point extraction from grey-level images based on two different detectors, Harris and SUSAN, suitable for robotic applications. The design is based on parallel and configurable processing elements for window operators and a buffering strategy to support a coarse-grain pipeline scheme for operator sequencing. When targeted to a Virtex-6 FPGA, a throughput of 49.45 Mpixel/s (processing rate of 161 frames per second of VGA image resolution) is achieved at a clock frequency of 50 MHz.
关键词:Interest point detectors; FPGA; real-time processing