首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Retreatment Predictions in Odontology by means of CBR Systems
  • 本地全文:下载
  • 作者:Livia Campo ; Ignacio J. Aliaga ; Juan F. De Paz
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/7485250
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The field of odontology requires an appropriate adjustment of treatments according to the circumstances of each patient. A follow-up treatment for a patient experiencing problems from a previous procedure such as endodontic therapy, for example, may not necessarily preclude the possibility of extraction. It is therefore necessary to investigate new solutions aimed at analyzing data and, with regard to the given values, determine whether dental retreatment is required. In this work, we present a decision support system which applies the case-based reasoning (CBR) paradigm, specifically designed to predict the practicality of performing or not performing a retreatment. Thus, the system uses previous experiences to provide new predictions, which is completely innovative in the field of odontology. The proposed prediction technique includes an innovative combination of methods that minimizes false negatives to the greatest possible extent. False negatives refer to a prediction favoring a retreatment when in fact it would be ineffective. The combination of methods is performed by applying an optimization problem to reduce incorrect classifications and takes into account different parameters, such as precision, recall, and statistical probabilities. The proposed system was tested in a real environment and the results obtained are promising.
国家哲学社会科学文献中心版权所有