期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2016
卷号:2016
DOI:10.1155/2016/4560365
出版社:Hindawi Publishing Corporation
摘要:Activities of Daily Livings (ADLs) refer to the activities that are carried out by an individual for everyday living. Recognition of ADLs is key element for building intelligent and pervasive environments. We propose a two-layer HMM to build a ADLs recognition model that can represent the mapping between low-level sensor data and high-level activity based on the binary sensor data. We used embedded sensor with appliances or object to get object used sequence data as well as object name, type, interaction time, and location. In the first layer, we use location data of object used sensor to predict the activity class and in the second layer object used sequence data to determine the exact activity. We perform comparison with other activity recognition models using three real datasets to validate the proposed model. The results show that the proposed model achieves significantly better recognition performance than other models.