首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Comparative study of Classifiers' Performance for Gender Classification
  • 本地全文:下载
  • 作者:Santanu Modak ; Abhoy Chand Mondal
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2014
  • 卷号:2
  • 期号:5
  • 出版社:S&S Publications
  • 摘要:Reviewer gender classification is an important function of Sentiment Analysis system. Both supervisedand unsupervised approach may be applied for gender classification. In this paper we used supervised machine learningapproach. We use three different classifiers, namely Naïve Bayes Classifier, Maximum Entropy Classifier and DecisionTree Classifier respectively. We trained all classifiers using same training set and same feature function. Then we testthe Accuracy, Precision, Recall, F1-measure of all test cases using same test set. Finally, we make an comparativestudy about performance of this classifiers.
  • 关键词:naïve bayes classifier; maxent classifier; decision tree classifier; text classification; gender;classification; classifier
国家哲学社会科学文献中心版权所有