首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Investigations on Methods Developed for Effective Discovery of Functional Dependencies
  • 本地全文:下载
  • 作者:P.Andrew ; J.Anishkumar ; Prof.S.Balamurugan
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2015
  • 卷号:3
  • 期号:2
  • DOI:10.15680/ijircce.2015.0302051
  • 出版社:S&S Publications
  • 摘要:This paper details about various methods to discover functional dependencies from data.Effectivepruning for the discovery of conditional functional dependencies is discussed in detail. Di conditional FunctionalDependencies and Fast FDs a heuristic-driven, Depth-first algorithm for mining FD from relation instances areelaborated. Privacy preserving publishing micro data with Full Functional Dependencies and Conditional functionaldependencies for capturing data inconsistencies are examined. The approximation measures for functionaldependencies and the complexity of inferring functional dependencies are also observed. Compression - BasedEvaluation of partial determinations is portrayed. This survey would promote a lot of research in the area of miningfunctional dependencies from data.
  • 关键词:Effective Pruning; Conditional Functional Dependency (DFD); Mining; Data Anonymization;Similarity Constraints
国家哲学社会科学文献中心版权所有