首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Comparing the Performance of Frequent Itemsets Mining Algorithms
  • 本地全文:下载
  • 作者:Kalash Dave ; Mayur Rathod ; Parth Sheth
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2015
  • 卷号:3
  • 期号:3
  • DOI:10.15680/ijircce.2015.0303116
  • 出版社:S&S Publications
  • 摘要:Frequent Itemset mining is an important concept in Data Mining. With the development of complexapplications, huge amount of data is received from the user and collectively stored. In order to make these applicationsprofitable, the stakeholders need to understand important patterns from this data which occur frequently so that thesystem can be modified or updated as per the evaluated result. The business now-a-days being fast paced, it isimportant for the frequent itemset mining algorithms to be fast. This paper compares the performance of four suchalgorithms viz Apriori, ECLAT, FPgrowth and PrePost algorithm on the parameters of total time required andmaximum memory usage.
  • 关键词:Frequent Itemset Mining; Data Mining; Apriori; FPgrowth; PrePost; ECLAT
国家哲学社会科学文献中心版权所有