首页    期刊浏览 2025年07月05日 星期六
登录注册

文章基本信息

  • 标题:Efficient Analysis of Pharmaceutical Compound Structure Based on Enhanced K-Means Clustering Algorithm
  • 本地全文:下载
  • 作者:V. Palanisamy ; A. Kumarkombaiya
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2015
  • 卷号:3
  • 期号:4
  • DOI:10.15680/ijircce.2015.0304068
  • 出版社:S&S Publications
  • 摘要:In this paper to focuses on discovery of functional group of the connectivity atom for drug effects ofchemical compound structured data with position of each atom. A simple Kmeans algorithm, select an initial centroiddistance randomly for analysing the data. In the proposed method an Enhanced K means algorithm, forms a functionalgroup of inter connected atoms based on calculate initial centroid distance instead of random selected. Thepharmaceutical compounds specifically represented as atom number, atom name like carbon, hydrogen, nitrogen,oxygen with connected atoms. Here it can be experimented the number of iterations are reduced and performance oftime accuracy can improve when compare with chameleon and Birch algorithm.
  • 关键词:Enhanced K-Mean clustering algorithm; Chameleon algorithm; Birch algorithm
国家哲学社会科学文献中心版权所有