首页    期刊浏览 2025年06月03日 星期二
登录注册

文章基本信息

  • 标题:Hybrid Decision Tree using K-Means for Classifying Continuous Data
  • 本地全文:下载
  • 作者:Aparna P K ; Dr. Rajashree Shettar
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2015
  • 卷号:3
  • 期号:10
  • DOI:10.15680/IJIRCCE.2015.0310068
  • 出版社:S&S Publications
  • 摘要:One of the simplest and popular classification algorithms is the decision tree. While classification algorithms use a target attribute, Clustering algorithms group the data without a target attribute. K-Means is the simplest of the clustering algorithms. In a decision tree, branching of a nominal, ordinal, discrete or binary attribute is simple and straight forward compared to branching of a continuous attribute which is trickier, commonly creating a binary branch. Here, we present a hybrid algorithm that combines decision tree and K-Means to create multiple branches for a continuous attribute at a node. For the 9 standard datasets tested from UCI repository, the HDTKM algorithm gives an average accuracy of 78.1% and J48 gives an average accuracy o f 76.1%.
  • 关键词:Decision tree; K -Means; C4.5; Continuous data
国家哲学社会科学文献中心版权所有