期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:5
页码:1447-1452
DOI:10.1073/pnas.1525122113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level.