首页    期刊浏览 2026年01月02日 星期五
登录注册

文章基本信息

  • 标题:Optimal Training Parameters and Hidden Layer Neuron Number of Two-Layer Perceptron for Generalised Scaled Object Classification Problem
  • 作者:Vadim Romanuke
  • 期刊名称:Information Technology and Management Science
  • 印刷版ISSN:2255-9086
  • 电子版ISSN:2255-9094
  • 出版年度:2015
  • 卷号:18
  • 期号:1
  • 页码:42-48
  • DOI:10.1515/itms-2015-0007
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:The research is focused on optimising two-layer perceptron for generalised scaled object classification problem. The optimisation criterion is minimisation of inaccuracy. The inaccuracy depends on training parameters and hidden layer neuron number. After its statistics is accumulated, minimisation is executed by a numerical search. Perceptron is optimised additionally by extra training. As it is done, the classification error percentage does not exceed 3 % in case of the worst scale distortion.
  • 关键词:Extra pass training ; optimisation ; scaling-proof classifier ; two-layer perceptron
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有