首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Ontology-Based Classification System Development Methodology
  • 作者:Peter Grabusts ; Arkady Borisov ; Ludmila Aleksejeva
  • 期刊名称:Information Technology and Management Science
  • 印刷版ISSN:2255-9086
  • 电子版ISSN:2255-9094
  • 出版年度:2015
  • 卷号:18
  • 期号:1
  • 页码:129-134
  • DOI:10.1515/itms-2015-0020
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:The aim of the article is to analyse and develop an ontology-based classification system methodology that uses decision tree learning with statement propositionalized attributes. Classical decision tree learning algorithms, as well as decision tree learning with taxonomy and propositionalized attributes have been observed. Thus, domain ontology can be extracted from the data sets and can be used for data classification with the help of a decision tree. The use of ontology methods in decision tree-based classification systems has been researched. Using such methodologies, the classification accuracy in some cases can be improved.
  • 关键词:classification ; decision tree ; ontology ; propositionalization ; taxonomy
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有