This paper presents the design and simulation of a reconfigurable stop-band filter on a silicon substrate based on the combination of RF microelectromechanical system and metamaterial-based technologies. The device is implemented on coplanar waveguide structure by embedding complementary split-ring resonators on the central line and an RF MEMS varactor bridge supporting the neighboring ground planes. The response characteristics of this metamaterial-based filter can be dynamically tuned, thus enhancing its usefulness. The device operates within a frequency range of 16.5–19.5 GHz, giving a tuning range of 15%, and can be tuned from Ku-frequency band to K-frequency band. It works with a comparative low pull-in voltage of 17.42 V and a faster switching time of 0.138 µs. A thorough electromechanical analysis has been done by varying various structural and material parameters. Moreover, a comparative electrical performance of silicon and glass has been shown to overcome the cons of silicon by high-resistivity glass.