首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Particle Swarm Optimization Algorithm with Chaotic Mapping Model
  • 本地全文:下载
  • 作者:Songhao Jia ; Cai Yang ; Yan Tian
  • 期刊名称:The Open Cybernetics & Systemics Journal
  • 电子版ISSN:1874-110X
  • 出版年度:2014
  • 卷号:8
  • 期号:1
  • 页码:1252-1256
  • DOI:10.2174/1874110X01408011252
  • 出版社:Bentham Science Publishers Ltd
  • 摘要:

    Particle swarm optimization algorithm is easy to reach premature convergence in the solution process, and fall into the local optimal solution. Aiming at the problem, this paper proposes a particle swarm optimization algorithm with chaotic mapping (CM-PSO). The algorithms uses chaotic mapping function to optimize the initial state of population, improve the probability of obtain optimal solution. Then, CM-PSO algorithm introduces nonlinear decreasing strategy on the inertia weight to avoid local optimal solution. In the experimental stage, four different functions are used to validate the performance of the algorithm. The experimental results show that, compared with the standard particle swarm algorithm, CM-PSO algorithm has strong global searching ability, can effectively avoid the premature convergence problem, and enhance the ability of the algorithm to escape from local optima. Although the algorithm consumes time is slightly increased, it is worth for getting the global optimal solution with such cost.

国家哲学社会科学文献中心版权所有