摘要:Modern Internet has enabled wider usage, resulting in increased network traffic. Due to the high volume of data packets in networking, sampling techniques are widely used in flow-based network management software to manage traffic load. However, sampling processes reduce the likelihood of anomaly detection. Many studies have been carried out at improving the accuracy of anomaly detection. However, only a few studies have considered it with sampled flow traffic. In our study, we investigate the use of an artificial neural network (ANN)-based classifier to improve the accuracy of flow-based anomaly detection in sampled traffic. A feedback from the ANN-based anomaly detector determines the type of the flow sampling method that should be used. Our proposed technique handles malicious flows and benign flows with different sampling methods. To evaluate the proposed sampling technique, a number of flow-based datasets are generated. Our experiments confirm that the proposed technique improves the percentage of the sampled malicious flows by about 7% and it can preserve the majority of traffic information