摘要:The results are reported of exergoeconomic analyses of a simple gas turbine cycle without a fogging system (SGT), a simple steam injection gas turbine cycle (STIG), and a steam injection gas turbine cycle with inlet fogging cooler (FSTIG). The results show that (1) a gas-turbine cycle with steam injection and simultaneous cooling has a higher power output than the other considered cycle; (2) at maximum energy efficiency conditions the gas turbine has the highest exergy efficiency of the cycle components and the lowest value of exergy efficiency is calculated for the fog cooler, where the mixing of air and water at greatly different temperatures causes the high exergy destruction; and (3) utilization of the fogging cooler in the steam injection cycle increases the exergy destruction in the combustion chamber. Furthermore, the simple gas turbine cycle is found to be more economic as its relative cost difference, total unit product cost, and exergoeconomic factors are less than those for the two other configurations. However, its efficiency and net power output are notably lower than for the gas turbine with steam injection and/or fog cooling. The total unit product cost is highest for the simple gas turbine with steam injection.
关键词:gas turbine; fog cooling; steam injection; exergy; exergoeconomic analysis