期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:10
页码:2603-2608
DOI:10.1073/pnas.1600569113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The period polynomial rf(z) for an even weight k≥4 newform f∈Sk(Γ0(N)) is the generating function for the critical values of L(f,s). It has a functional equation relating rf(z) to rf(−1Nz). We prove the Riemann hypothesis for these polynomials: that the zeros of rf(z) lie on the circle |z|=1/N. We prove that these zeros are equidistributed when either k or N is large.
关键词:modular forms ; period polynomials ; Riemann hypothesis