This study investigated the effects of the K+ channel opener, pinacidil on hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs. In order to evaluate the vasodilatation mechanism of K+ channel opener, we also studied the effects of two K+ channel blocker, tetraethylammonium (TEA), a Ca2+ activated K+ channel blocker and glibenclamide (GLB), an ATP-sensitive K+ channel blocker.
MethodsIsolated lungs from white rabbits were ventilated with a normoxic gas (21%O2-5%CO2-74%N2) and a hypoxic gas (3%O2- 5%CO2-92%N2) alternatively, and then perfused with blood-containing perfusate solution. After a hypoxic pressor response (HPR) had been obtained, various drugs were added to the perfusate reservoir to achieve the predetermined circulating concentration, and the influences of the drugs on HPR were then tested.
ResultsPinacidil (0.3-6.0 mcM) produced a dose-dependent pulmonary vasodilation on hypoxic ventilation challenge. TEA (1 mM) caused pulmonary vasoconstriction in normoxic ventilation and potentiated a hypoxic pressor response. When the hypoxic pressor response was potentiated by TEA, pinacidil (1.0, 3.0 mcM) reduced the contraction, but GLB did not cause pulmonary vasoconstriction under normoxic ventilation, potentiate a hypoxic pressor response.
ConclusionsPiacidil is capable of opposing the pulmonary responses of acute hypoxia. Moreover the effects of TEA and GLB suggest that HPV might be mediated through Ca2+ activated K+ channels, not through ATP-sensitive K+ channels.