首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:The Ventilatory Effect of Intratracheal Pulmonary Ventilation in Rabbits with Acute Respiratory Failure
  • 作者:Lee, Kook Hyun ; Cho, Byoung Woo ; Lee, Sang Chul
  • 期刊名称:Korean Journal of Anesthesiology
  • 印刷版ISSN:2005-6419
  • 出版年度:1998
  • 卷号:35
  • 期号:2
  • 页码:223-228
  • DOI:10.4097/kjae.1998.35.2.223
  • 语种:Korean
  • 出版社:The Korean Society of Anesthesiologists,
  • 摘要:

    BACKGROUND: New methods of ventilation are devised to minimize airway pressure increase because high pressure ventilation might result in barotrauma and hemodynamic compromise. Intratracheal pulmonary ventilation(ITPV) was developed to allow a decrease in physiological dead space during mechanical ventilation. ITPV can be applied broadly when it combined with pressure controlled ventilation(PCV) to make a hybrid ventilation(HV). We intended to compare the respiratory effect of HV with volume controlled ventilation(VCV) and PCV. METHODS: Oleic acid of 0.06 ml/kg was injected to induce acute respiratory failure in rabbits. To reduce anatomic dead space, a reverse thrust catheter(RTC) was introduced into an endotracheal tube(ETT) through an adapter and positioned just above the carina inside the ETT. VCV and PCV were compared with HV by measuring peak inspiratory pressure(PIP) and dead space(VD) at various respiratory rates(RR) from 20 breaths/min to 120 breaths/min. Gas flowed through the RTC at the flow rate of 1 liter/min during HV. RESULTS: The values of VD of VCV were 37+/-10 ml, 29+/-11 ml, 23+/-5 ml, and 18+/-3 ml at respiratory rate of 20 breaths/min, 40 breaths/min, 80 breaths/min and 120 breaths/min, respectively. The values of VD of PCV were 33+/-6 ml, 28+/-7 ml, 23+/-5 ml, and 18+/-3 ml, respectively. The values of VD of HV were 25+/-13 ml, 15+/-8 ml, 9+/-5 ml, and 8+/-4 ml, respectively. The VD of HV were significantly lower than those of VCV and PCV at the same RR. The PIP was lower in HV than in VCV and PCV at the same RR. CONCLUSION: It can be concluded that HV, as a modification of ITPV, can be applied to acute respiratory failure in rabbits to minimize airway pressures and dead space of mechanical ventilation.

  • 关键词:Lung: respiratory failure; dead space; Ventilation: intratracheal pulmonay; hybrid; pressure controlled; volume controlled
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有