首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Hadoop Mapreduce Performance Enhancement Using In-Node Combiners
  • 本地全文:下载
  • 作者:Woo-Hyun Lee ; Hee-Gook Jun ; Hyoung-Joo Kim
  • 期刊名称:International Journal of Computer Science & Information Technology (IJCSIT)
  • 印刷版ISSN:0975-4660
  • 电子版ISSN:0975-3826
  • 出版年度:2015
  • 卷号:7
  • 期号:5
  • 页码:1
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:While advanced analysis of large dataset is in high demand, data sizes have surpassed capabilities ofconventional software and hardware. Hadoop framework distributes large datasets over multiplecommodity servers and performs parallel computations. We discuss the I/O bottlenecks of Hadoopframework and propose methods for enhancing I/O performance. A proven approach is to cache data tomaximize memory-locality of all map tasks. We introduce an approach to optimize I/O, the in-nodecombining design which extends the traditional combiner to a node level. The in-node combiner reducesthe total number of intermediate results and curtail network traffic between mappers and reducers.
  • 关键词:Big Data;Hadoop;MapReduce;NoSQL; Data Management.
国家哲学社会科学文献中心版权所有