首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Online Incremental Learning for High Bandwidth Network Traffic Classification
  • 本地全文:下载
  • 作者:H. R. Loo ; S. B. Joseph ; M. N. Marsono
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/1465810
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Data stream mining techniques are able to classify evolving data streams such as network traffic in the presence of concept drift. In order to classify high bandwidth network traffic in real-time, data stream mining classifiers need to be implemented on reconfigurable high throughput platform, such as Field Programmable Gate Array (FPGA). This paper proposes an algorithm for online network traffic classification based on the concept of incremental -means clustering to continuously learn from both labeled and unlabeled flow instances. Two distance measures for incremental -means (Euclidean and Manhattan) distance are analyzed to measure their impact on the network traffic classification in the presence of concept drift. The experimental results on real datasets show that the proposed algorithm exhibits consistency, up to 94% average accuracy for both distance measures, even in the presence of concept drifts. The proposed incremental -means classification using Manhattan distance can classify network traffic 3 times faster than Euclidean distance at 671 thousands flow instances per second.
国家哲学社会科学文献中心版权所有