首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The SVM Classifier Based on the Modified Particle Swarm Optimization
  • 本地全文:下载
  • 作者:Liliya Demidova ; Evgeny Nikulchev ; Yulia Sokolova
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2016
  • 卷号:7
  • 期号:2
  • DOI:10.14569/IJACSA.2016.070203
  • 出版社:Science and Information Society (SAI)
  • 摘要:The problem of development of the SVM classifier based on the modified particle swarm optimization has been considered. This algorithm carries out the simultaneous search of the kernel function type, values of the kernel function parameters and value of the regularization parameter for the SVM classifier. Such SVM classifier provides the high quality of data classification. The idea of particles' «regeneration» is put on the basis of the modified particle swarm optimization algorithm. At the realization of this idea, some particles change their kernel function type to the one which corresponds to the particle with the best value of the classification accuracy. The offered particle swarm optimization algorithm allows reducing the time expenditures for development of the SVM classifier. The results of experimental studies confirm the efficiency of this algorithm.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; particle swarm optimization; SVM-classifier; kernel function type; kernel function parameters; regularization parameter; support vectors
国家哲学社会科学文献中心版权所有