首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions
  • 本地全文:下载
  • 作者:Abha Sharma ; R. S. Thakur
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2016
  • 卷号:7
  • 期号:2
  • DOI:10.14569/IJACSA.2016.070256
  • 出版社:Science and Information Society (SAI)
  • 摘要:Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorical data. A statistical analysis have been done on the popular categorical dataset which shows the user specified cluster centres stuck at local optimal solution in K-modes algorithm even in all the higher iterations and the proposed algorithm overcome this problem of local optima. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The obtained results, shows that the proposed algorithm is better over the conventional k-Modes algorithm in terms of optimal solutions and within cluster variation measure.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Categorical data; Genetic Algorithm; Population; Population size
国家哲学社会科学文献中心版权所有