期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2016
卷号:7
期号:3
DOI:10.14569/IJACSA.2016.070308
出版社:Science and Information Society (SAI)
摘要:Time-based online media, such as video, has been growing in importance. Still, there is limited research on information retrieval of time-coded media content. This work elaborates on the idea of extracting feature characteristics from time-based online content by means of users' interactions analysis instead of analyzing the content itself. Accordingly, a time series of users’ activity in online media is constructed and shown to exhibit rich temporal dynamics. Additionally it is demonstrated that is also possible to detect characteristic patterns in collective activity while accessing time-based media. Pattern detection of collective activity, as well as feature extraction of the corresponding pattern, is achieved by means of a time series clustering approach. This is demonstrated with the proposed approach featuring information-rich videos. It is shown that the proposed probabilistic algorithm effectively detects distinct shapes of the users’ time series, predicting correctly popularity dynamics, as well as their scale characteristics.