首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:A semi-automated approach to building text summarisation classifiers
  • 本地全文:下载
  • 作者:Matias Garcia-Constantino ; Frans Coenen ; P-J Noble
  • 期刊名称:Journal of Theoretical and Applied Computer Science
  • 印刷版ISSN:2299-2634
  • 电子版ISSN:2300-5653
  • 出版年度:2012
  • 卷号:6
  • 期号:4
  • 页码:7-23
  • 出版社:Polska Akademia Nauk * Oddzial w Gdansku, Komisja Informatyki,Polish Academy of Sciences, Gdansk Branch, Computer Science Commission
  • 摘要:An investigation into the extraction of useful information from the free text element of questionnaires, using a semi-automated summarisation extraction technique, is described. The summarisation technique utilises the concept of classification but with the support of domain/human experts during classifier construction. A realisation of the proposed technique, SARSET (Semi-Automated Rule Summarisation Extraction Tool), is presented and evaluated using real questionnaire data. The results of this evaluation are compared against the results obtained using two alternative techniques to build text summarisation classifiers. The first of these uses standard rule-based classifier generators, and the second is founded on the concept of building classifiers using secondary data. The results demonstrate that the proposed semi-automated approach outperforms the other two approaches considered.
  • 关键词:questionnaire data mining; text summarisation; text classification
国家哲学社会科学文献中心版权所有