首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Weakly Supervised Polarimetric SAR Image Classification with Multi-modal Markov Aspect Model
  • 本地全文:下载
  • 作者:Wen Yang ; Dengxin Dai ; Jun Wu
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2010
  • 卷号:XXXVIII - Part 7B
  • 页码:669-673
  • 出版社:Copernicus Publications
  • 摘要:In this paper, we present a weakly supervised classification method for a large polarimetric SAR (PolSAR) imagery using multi-modal markov aspect model (MMAM). Given a training set of subimages with the corresponding semantic concepts defined by the user, learning is based on markov aspect model which captures spatial coherence and thematic coherence. Classification experiments on RadarSat-2 PolSAR data of Flevoland in Netherlands show that this approach improves region discrimination and produces satisfactory results. Furthermore, multiple diverse features can be efficiently combined with multi-modal aspect model to further improve the classification accuracy
  • 关键词:Land Cover; Classification; Polarization; SAR; RADARSAT; Imagery
国家哲学社会科学文献中心版权所有