期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2011
卷号:XXXVIII - 4/W19
页码:75-78
DOI:10.5194/isprsarchives-XXXVIII-4-W19-75-2011
出版社:Copernicus Publications
摘要:This paper proposes to use compression-based similarity measures to cluster spectral signatures on the basis of their similarities. Such universal distances estimate the shared information between two objects by comparing their compression factors, which can be obtained by any standard compressor. Experiments on spectra, both collected in the field and selected from a hyperspectral scene, show that these methods may outperform traditional choices for spectral distances based on vector processing such as Spectral Angle, Spectral Information Divergence, Spectral Correlation, and Euclidean Distance
关键词:Spectral distance; similarity measure; data compression