期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2011
卷号:XXXVIII - 5/W12
页码:79-84
DOI:10.5194/isprsarchives-XXXVIII-5-W12-79-2011
出版社:Copernicus Publications
摘要:This paper presents an approach for automatically approximating the above-ground volume and branch size distribution of trees from dense terrestrial laser scanner produced point clouds. The approach is based on the assumption that the point cloud is a sample of a surface in 3D space and the surface is locally like a cylinder. The point cloud is covered with small neighborhoods which conform to the surface. Then the neighborhoods are characterized geometrically and these characterizations are used to classify the points into trunk, branch, and other points. Finally, proper subsets are determined for cylinder fitting using geometric characterizations of the subsets
关键词:LIDAR; point cloud; trees; classification; size approximation; carbon cycle