首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:OBJECT-BASED FOREST CHANGE DETECTION USING HIGH RESOLUTION SATELLITE IMAGES
  • 本地全文:下载
  • 作者:N. Chehata ; C. Orny ; S. Boukir
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2011
  • 卷号:XXXVIII - 3/W22
  • 页码:49-54
  • DOI:10.5194/isprsarchives-XXXVIII-3-W22-49-2011
  • 出版社:Copernicus Publications
  • 摘要:An object-based approach for forest disaster change detection using High Resolution (HR) satellite images is proposed. An automatic feature selection process is used to optimize image segmentation via an original calibration-like procedure. A multitemporal classification then enables the separation of wind-fall from intact areas based on a new descriptor that depends on the level of fragmentation of the detected regions. The mean shift algorithm was used in both the segmentation and the classification processes. The method was tested on a high resolution Formosat-2 multispectral satellite image pair acquired before and after the Klaus storm. The obtained results are encouraging and the contribution of high resolution images for forest disaster mapping is discussed
  • 关键词:Multitemporal classification; segmentation; feature selection; change detection; forest damage
国家哲学社会科学文献中心版权所有