期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2012
卷号:XXXIX-B7
页码:141-146
DOI:10.5194/isprsarchives-XXXIX-B7-141-2012
出版社:Copernicus Publications
摘要:Hyperspectral data has remarkable capabilities for automatic identification and mapping of urban surface materials because of its high spectral resolution. It includes a wealth of information which facilitates an understanding of the ground material properties. For identification of road surface materials, information about their relation to hyperspectral sensor measurements is needed. In this study an approach for classification of road surface materials using hyperspectral data is developed. The condition of the road surface materials, in particular asphalt is also investigated. Hyperspectral data with 4m spatial resolution of the city of Ludwigsburg, Germany consisting of 125 bands (wavelength range of 0.4542μm to 2.4846 μm) is used. Different supervised classification methods such as spectral angle mapper are applied based on a spectral library established from field measurements and in-situ inspection. It is observed that using the spectral angle mapper approach with regions of interest is helpful for road surface material identification. Additionally, spectral features are tested using their spectral functions in order to achieve better classification results. Spectral functions such as mean and standard deviation are suitable for discriminating asphalt, concrete and gravel. Different asphalt conditions (good, intermediate and bad) are distinguished using the spectral functions such as mean and image ratio. The mean function gives reliable results. Automatisierte Liegenschaftskarte (ALK) vector data for roads is integrated in order to confine the analysis to roads. Reliable reference spectra are useful in evaluation of classification results for spectrally similar road surface materials. The classification results are assessed using orthophotos and field visits information.