首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:KERNEL-COMPOSITION FOR CHANGE DETECTION IN MEDIUM RESOLUTION REMOTE SENSING DATA
  • 本地全文:下载
  • 作者:A. C. Braun ; U. Weidner ; S. Hinz
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2012
  • 卷号:XXXIX-B7
  • 页码:281-286
  • DOI:10.5194/isprsarchives-XXXIX-B7-281-2012
  • 出版社:Copernicus Publications
  • 摘要:A framework for multitemporal change detection based on kernel-composition is applied to a multispectral-multitemporal classification scenario, evaluated and compared to traditional change detection approaches. The framework makes use of the fact that images of different points in time can be used as input data sources for kernel-composition – a data fusion approach typically used with kernel based classifiers like support vector machines (SVM). The framework is used to analyze the growth of a limestone pit in the Upper Rhine Graben (West Germany). Results indicate that the highest accuracy rates are produced by the kernel based framework. The approach produces the least number of false positives and gives the most convincing overall impression
  • 关键词:Change Detection; Classification; Landuse; multispectral; multitemporal; Landsat
国家哲学社会科学文献中心版权所有