首页    期刊浏览 2025年06月06日 星期五
登录注册

文章基本信息

  • 标题:FEATURE MODELLING OF HIGH RESOLUTION REMOTE SENSING IMAGES CONSIDERING SPATIAL AUTOCORRELATION
  • 本地全文:下载
  • 作者:Y. X. Chen ; K. Qin ; Y. Liu
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2012
  • 卷号:XXXIX-B3
  • 页码:467-472
  • DOI:10.5194/isprsarchives-XXXIX-B3-467-2012
  • 出版社:Copernicus Publications
  • 摘要:To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis statistic is used for the analysis of local spatial autocorrelation within the neighbourhood window determined by the range information of the semivariograms. Two segmentation experiments are conducted via the Fuzzy C -Means (FCM) algorithm which incorporates both spatial autocorrelation features and spectral features, and the experimental results show that spatial autocorrelation features can effectively improve the segmentation quality of high resolution satellite images
  • 关键词:high resolution; feature; modelling; spatial autocorrelation; segmentation
国家哲学社会科学文献中心版权所有