期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2013
卷号:XL-1/W1
页码:393-397
DOI:10.5194/isprsarchives-XL-1-W1-393-2013
出版社:Copernicus Publications
摘要:When full-waveform LiDAR (FW-LiDAR) data are applied to extract the component feature information of interest targets, there exist a problem of components lost during the waveform decomposition procedure, which severely constrains the performance of subsequent targets information extraction. Focusing on the problem above, an enhance component detection algorithm, which combines Finite Mixed Method (FMM), Levenberg-Marquardt (LM) algorithm and Penalized Minimum Matching Distance (PMMD),is proposed in this paper. All of the algorithms for parameters initialization, waveform decomposition and missing component detection have been improved, which greatly increase the precision of component detection, and guarantee the precision of waveform decomposition that could help the weak information extraction of interest targets. The effectiveness of this method is verified by the experimental results of simulation and measured data.