首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A COMPARATIVE STUDY BETWEEN PAIR-POINT CLIQUE AND MULTI-POINT CLIQUE MARKOV RANDOM FIELD MODELS FOR LAND COVER CLASSIFICATION
  • 本地全文:下载
  • 作者:B. Hu ; P. Li
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2013
  • 卷号:XL-7/W1
  • 页码:41-44
  • DOI:10.5194/isprsarchives-XL-7-W1-41-2013
  • 出版社:Copernicus Publications
  • 摘要:Markov random field (MRF) is an effective method for description of local spatial-temporal dependence of image and has been widely used in land cover classification and change detection. However, existing studies only use pair-point clique (PPC) to describe spatial dependence of neighbouring pixels, which may not fully quantify complex spatial relations, particularly in high spatial resolution images. In this study, multi-point clique (MPC) is adopted in MRF model to quantitatively express spatial dependence among pixels. A modified least squares fit (LSF) method based on robust estimation is proposed to calculate potential parameters for MRF models with different types. The proposed MPC-MRF method is evaluated and quantitatively compared with traditional PPCMRF in urban land cover classification using high resolution hyperspectral HYDICE data of Washington DC. The experimental results revealed that the proposed MPC-MRF method outperformed the traditional PPC-MRF method in terms of classification details. The MPC-MRF provides a sophisticated way of describing complex spatial dependence for relevant applications
  • 关键词:Image Classification; Spatial Dependence; Markov Random Field; Pixel Interaction; Parameter Estimation
国家哲学社会科学文献中心版权所有