首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:CLASSIFICATION OF POLARIMETRIC SAR IMAGE BASED ON THE SUBSPACE METHOD
  • 本地全文:下载
  • 作者:J. Xu ; Z. Li ; B. Tian
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2013
  • 卷号:XL-7/W1
  • 页码:145-148
  • DOI:10.5194/isprsarchives-XL-7-W1-145-2013
  • 出版社:Copernicus Publications
  • 摘要:Land cover classification is one of the most significant applications in remote sensing. Compared to optical sensing technologies, synthetic aperture radar (SAR) can penetrate through clouds and have all-weather capabilities. Therefore, land cover classification for SAR image is important in remote sensing. The subspace method is a novel method for the SAR data, which reduces data dimensionality by incorporating feature extraction into the classification process. This paper uses the averaged learning subspace method (ALSM) method that can be applied to the fully polarimetric SAR image for classification. The ALSM algorithm integrates three-component decomposition, eigenvalue/eigenvector decomposition and textural features derived from the gray-level cooccurrence matrix (GLCM). The study site, locates in the Dingxing county, in Hebei Province, China. We compare the subspace method with the traditional supervised Wishart classification. By conducting experiments on the fully polarimetric Radarsat-2 image, we conclude the proposed method yield higher classification accuracy. Therefore, the ALSM classification method is a feasible and alternative method for SAR image
  • 关键词:Polarimetric SAR; Classification; subspace; features
国家哲学社会科学文献中心版权所有