期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2013
卷号:XL-1/W3
页码:123-126
DOI:10.5194/isprsarchives-XL-1-W3-123-2013
出版社:Copernicus Publications
摘要:Edges contain important information in image and edge detection can be considered a low level process in image processing. Among different methods developed for this purpose traditional methods are simple and rather efficient. In Swarm Intelligent methods developed in last decade, ACO is more capable in this process. This paper uses traditional edge detection operators such as Sobel and Canny as input to ACO and turns overall process adaptive to application. Magnitude matrix or edge image can be used for initial pheromone and ant distribution. Image size reduction is proposed as an efficient smoothing method. A few parameters such as area and diameter of travelled path by ants are converted into rules in pheromone update process. All rules are normalized and final value is acquired by averaging.
关键词:Edge Detection; Image Processing; Ant Colony Optimization; Artificial Intelligence