首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A DECISION LEVEL FUSION METHOD FOR OBJECT RECOGNITION USING MULTI-ANGULAR IMAGERY
  • 本地全文:下载
  • 作者:F. Tabib Mahmoudi ; F. Samadzadegan ; P. Reinartz
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2013
  • 卷号:XL-1/W3
  • 页码:409-414
  • DOI:10.5194/isprsarchives-XL-1-W3-409-2013
  • 出版社:Copernicus Publications
  • 摘要:Spectral similarity and spatial adjacency between various kinds of objects, shadow and occluded areas behind high rise objects as well as complex relationships lead to object recognition difficulties and ambiguities in complex urban areas. Using new multi-angular satellite imagery, higher levels of analysis and developing a context aware system may improve object recognition results in these situations. In this paper, the capability of multi-angular satellite imagery is used in order to solve object recognition difficulties in complex urban areas based on decision level fusion of Object Based Image Analysis (OBIA). The proposed methodology has two main stages. In the first stage, object based image analysis is performed independently on each of the multi-angular images. Then, in the second stage, the initial classified regions of each individual multi-angular image are fused through a decision level fusion based on the definition of scene context. Evaluation of the capabilities of the proposed methodology is performed on multi-angular WorldView-2 satellite imagery over Rio de Janeiro (Brazil).The obtained results represent several advantages of multi-angular imagery with respect to a single shot dataset. Together with the capabilities of the proposed decision level fusion method, most of the object recognition difficulties and ambiguities are decreased and the overall accuracy and the kappa values are improved
  • 关键词:Object Recognition; Decision Level Fusion; Visibility Map; Shadow Recovery; Texture; Weighting Strategy
国家哲学社会科学文献中心版权所有