首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:CONTEXTUAL IMAGE CLASSIFICATION APPROACH FOR MONITORING OF AGRICULTURAL LAND COVER BY SUPPORT VECTOR MACHINES AND MARKOV RANDOM FIELDS
  • 本地全文:下载
  • 作者:H. Vahidi ; E. Monabbati
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2013
  • 卷号:XL-1/W3
  • 页码:441-446
  • DOI:10.5194/isprsarchives-XL-1-W3-441-2013
  • 出版社:Copernicus Publications
  • 摘要:The main idea of this paper is to integrate the non-contextual support vector machines (SVM) classifiers with Markov random fields (MRF) approach to develop a contextual framework for monitoring of agricultural land cover. To this end, the SVM and MRF approaches were integrated to exploit both spectral and spatial contextual information in the image for more accurate classification of remote sensing data from an agricultural region in Biddinghuizen, the Netherlands. Comparative analysis of this study clearly demonstrated that the proposed contextual method based on SVM-MRF models generates a higher average accuracy, overall accuracy and Kappa coefficient compared with non-contextual SVM method. Since the spatial information is considered in the proposed method, this study indicates that a neater, more homogonous and speckle-free results could be generated by the SVM-MRF approach
  • 关键词:Remote Sensing; Image Classification; Contextual; Support Vector Machines; Markov Random Fields
国家哲学社会科学文献中心版权所有