期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2013
卷号:XL-1/W3
页码:441-446
DOI:10.5194/isprsarchives-XL-1-W3-441-2013
出版社:Copernicus Publications
摘要:The main idea of this paper is to integrate the non-contextual support vector machines (SVM) classifiers with Markov random fields (MRF) approach to develop a contextual framework for monitoring of agricultural land cover. To this end, the SVM and MRF approaches were integrated to exploit both spectral and spatial contextual information in the image for more accurate classification of remote sensing data from an agricultural region in Biddinghuizen, the Netherlands. Comparative analysis of this study clearly demonstrated that the proposed contextual method based on SVM-MRF models generates a higher average accuracy, overall accuracy and Kappa coefficient compared with non-contextual SVM method. Since the spatial information is considered in the proposed method, this study indicates that a neater, more homogonous and speckle-free results could be generated by the SVM-MRF approach
关键词:Remote Sensing; Image Classification; Contextual; Support Vector Machines; Markov Random Fields