首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGES BY COMBINATION OF NON-PARAMETRIC WEIGHTED FEATURE EXTRACTION (NWFE) AND MODIFIED NEIGHBORHOOD PRESERVING EMBEDDING (NPE)
  • 本地全文:下载
  • 作者:T. Alipour Fard ; H. Arefi
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2014
  • 卷号:XL-2/W3
  • 页码:31-34
  • DOI:10.5194/isprsarchives-XL-2-W3-31-2014
  • 出版社:Copernicus Publications
  • 摘要:This paper combine two conventional feature extraction methods (NWFE&NPE) in a novel framework and present a new semi-supervised feature extraction method called Adjusted Semi supervised Discriminant Analysis (ASEDA). The advantage of this method is dominating the Hughes phenomena, automatic selection of unlabelled pixels, extraction of more than L-1(L: number of classes) features and avoidance of singularity or near singularity of within-class scatter matrix. Experimental results on well-known hyperspectral dataset demonstrate that compared to conventional extraction algorithms the overall accuracy of the classification increased
  • 关键词:Hyperspectral Imagery; Feature Extraction; LDA; NPE; Classification
国家哲学社会科学文献中心版权所有