期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2015
卷号:XL-7/W3
页码:433-439
DOI:10.5194/isprsarchives-XL-7-W3-433-2015
出版社:Copernicus Publications
摘要:The University of Natural Resources and Life Sciences (BOKU) in Vienna (Austria) in cooperation with the National Drought Management Authority (NDMA) in Nairobi (Kenya) has setup an operational processing chain for mapping drought occurrence and strength for the territory of Kenya using the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI at 250 m ground resolution from 2000 onwards. The processing chain employs a modified Whittaker smoother providing consistent NDVI “Mondayimages” in near real-time (NRT) at a 7-daily updating interval. The approach constrains temporally extrapolated NDVI values based on reasonable temporal NDVI paths. Contrary to other competing approaches, the processing chain provides a modelled uncertainty range for each pixel and time step. The uncertainties are calculated by a hindcast analysis of the NRT products against an “optimum” filtering. To detect droughts, the vegetation condition index (VCI) is calculated at pixel level and is spatially aggregated to administrative units. Starting from weekly temporal resolution, the indicator is also aggregated for 1- and 3-monthly intervals considering available uncertainty information. Analysts at NDMA use the spatially/temporally aggregated VCI and basic image products for their monthly bulletins. Based on the provided bio-physical indicators as well as a number of socio-economic indicators, contingency funds are released by NDMA to sustain counties in drought conditions. The paper shows the successful application of the products within NDMA by providing a retrospective analysis applied to droughts in 2006, 2009 and 2011. Some comparisons with alternative products (e.g. FEWS NET, the Famine Early Warning Systems Network) highlight main differences.