首页    期刊浏览 2025年09月21日 星期日
登录注册

文章基本信息

  • 标题:Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?
  • 本地全文:下载
  • 作者:I. Theologou ; M. Patelaki ; K. Karantzalos
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2015
  • 卷号:XL-7/W3
  • 页码:1511-1516
  • DOI:10.5194/isprsarchives-XL-7-W3-1511-2015
  • 出版社:Copernicus Publications
  • 摘要:Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn’t establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates
  • 关键词:Landsat; Reflectance; Earth observation; Monitoring; Environment; Lake
国家哲学社会科学文献中心版权所有