首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:MERGING AIRBORNE LIDAR DATA AND SATELLITE SAR DATA FOR BUILDING CLASSIFICATION
  • 本地全文:下载
  • 作者:T. Yamamoto ; M. Nakagawa
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2015
  • 卷号:XL-4/W5
  • 页码:227-232
  • DOI:10.5194/isprsarchives-XL-4-W5-227-2015
  • 出版社:Copernicus Publications
  • 摘要:A frequent map revision is required in GIS applications, such as disaster prevention and urban planning. In general, airborne photogrammetry and LIDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, attribute data acquisition and classification depend on manual editing works including ground surveys. In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map generation and revision. However, these approaches classify geometrical attributes. Moreover, ground survey and manual editing works are finally required in attribute data classification. On the other hand, although geometrical data extraction is difficult, SAR data have a possibility to automate the attribute data acquisition and classification. The SAR data represent microwave reflections on various surfaces of ground and buildings. There are many researches related to monitoring activities of disaster, vegetation, and urban. Moreover, we have an opportunity to acquire higher resolution data in urban areas with new sensors, such as ALOS2 PALSAR2. Therefore, in this study, we focus on an integration of airborne LIDAR data and satellite SAR data for building extraction and classification
  • 关键词:Urban Sensing; Building Extraction; Building Classification; Airborne LiDAR; Satellite SAR; Data Fusion
国家哲学社会科学文献中心版权所有