首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:CLASSIFICATION OF BIG POINT CLOUD DATA USING CLOUD COMPUTING
  • 本地全文:下载
  • 作者:K. Liu ; J. Boehm
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2015
  • 卷号:XL-3/W3
  • 页码:553-557
  • DOI:10.5194/isprsarchives-XL-3-W3-553-2015
  • 出版社:Copernicus Publications
  • 摘要:Point cloud data plays an significant role in various geospatial applications as it conveys plentiful information which can be used for different types of analysis. Semantic analysis, which is an important one of them, aims to label points as different categories. In machine learning, the problem is called classification. In addition, processing point data is becoming more and more challenging due to the growing data volume. In this paper, we address point data classification in a big data context. The popular cluster computing framework Apache Spark is used through the experiments and the promising results suggests a great potential of Apache Spark for large-scale point data processing.
  • 关键词:Point cloud; Machine learning; Cloud computing; Big data
国家哲学社会科学文献中心版权所有