首页    期刊浏览 2026年01月03日 星期六
登录注册

文章基本信息

  • 标题:Nonlinear predictive control based on neural multi-models
  • 本地全文:下载
  • 作者:Maciej Ławryńczuk ; Piotr Tatjewski
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2010
  • 卷号:20
  • 期号:1
  • DOI:10.2478/v10006-010-0001-y
  • 出版社:De Gruyter Open
  • 摘要:This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem
  • 关键词:process control; model predictive control; neural networks; optimisation; linearisation
国家哲学社会科学文献中心版权所有