首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multi-label classification using error correcting output codes
  • 本地全文:下载
  • 作者:Tomasz Kajdanowicz ; Przemysław Kazienko
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2012
  • 卷号:22
  • 期号:4
  • DOI:10.2478/v10006-012-0061-2
  • 出版社:De Gruyter Open
  • 摘要:A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and empirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through exhaustive studies over combinations of three distinct classification algorithms and four ECOC methods employed in the multi-label classification problem. The experimental results revealed that (i) the Bode–Chaudhuri–Hocquenghem (BCH) code matched with any multi-label classifier results in better classification quality; (ii) the accuracy of the binary relevance classification method strongly depends on the coding scheme; (iii) the label power-set and the RAkEL classifier consume the same time for computation irrespective of the coding utilized; (iv) in general, they are not suitable for ECOCs because they are not capable to benefit from ECOC correcting abilities; (v) the all-pairs code combined with binary relevance is not suitable for datasets with larger label sets
  • 关键词:machine learning; supervised learning; multi-label classification; error-correcting output codes; ECOC; ensemble methods; binary relevance; framework
国家哲学社会科学文献中心版权所有